117 research outputs found

    Quantum walk based search algorithms

    Full text link
    In this survey paper we give an intuitive treatment of the discrete time quantization of classical Markov chains. Grover search and the quantum walk based search algorithms of Ambainis, Szegedy and Magniez et al. will be stated as quantum analogues of classical search procedures. We present a rather detailed description of a somewhat simplified version of the MNRS algorithm. Finally, in the query complexity model, we show how quantum walks can be applied to the following search problems: Element Distinctness, Matrix Product Verification, Restricted Range Associativity, Triangle, and Group Commutativity.Comment: 16 pages, survey pape

    Efficient quantum algorithms for some instances of the non-Abelian hidden subgroup problem

    Get PDF
    In this paper we show that certain special cases of the hidden subgroup problem can be solved in polynomial time by a quantum algorithm. These special cases involve finding hidden normal subgroups of solvable groups and permutation groups, finding hidden subgroups of groups with small commutator subgroup and of groups admitting an elementary Abelian normal 2-subgroup of small index or with cyclic factor group.Comment: 10 page

    Quantum Algorithms for the Triangle Problem

    Full text link
    We present two new quantum algorithms that either find a triangle (a copy of K3K_{3}) in an undirected graph GG on nn nodes, or reject if GG is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes O~(n10/7)\tilde{O}(n^{10/7}) queries. The second algorithm uses O~(n13/10)\tilde{O}(n^{13/10}) queries, and it is based on a design concept of Ambainis~\cite{amb04} that incorporates the benefits of quantum walks into Grover search~\cite{gro96}. The first algorithm uses only O(logn)O(\log n) qubits in its quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first treated in~\cite{bdhhmsw01}, where an algorithm with O(n+nm)O(n+\sqrt{nm}) query complexity was presented, where mm is the number of edges of GG.Comment: Several typos are fixed, and full proofs are included. Full version of the paper accepted to SODA'0

    Separating decision tree complexity from subcube partition complexity

    Get PDF
    The subcube partition model of computation is at least as powerful as decision trees but no separation between these models was known. We show that there exists a function whose deterministic subcube partition complexity is asymptotically smaller than its randomized decision tree complexity, resolving an open problem of Friedgut, Kahn, and Wigderson (2002). Our lower bound is based on the information-theoretic techniques first introduced to lower bound the randomized decision tree complexity of the recursive majority function. We also show that the public-coin partition bound, the best known lower bound method for randomized decision tree complexity subsuming other general techniques such as block sensitivity, approximate degree, randomized certificate complexity, and the classical adversary bound, also lower bounds randomized subcube partition complexity. This shows that all these lower bound techniques cannot prove optimal lower bounds for randomized decision tree complexity, which answers an open question of Jain and Klauck (2010) and Jain, Lee, and Vishnoi (2014).Comment: 16 pages, 1 figur

    Search via Quantum Walk

    Full text link
    We propose a new method for designing quantum search algorithms for finding a "marked" element in the state space of a classical Markov chain. The algorithm is based on a quantum walk \'a la Szegedy (2004) that is defined in terms of the Markov chain. The main new idea is to apply quantum phase estimation to the quantum walk in order to implement an approximate reflection operator. This operator is then used in an amplitude amplification scheme. As a result we considerably expand the scope of the previous approaches of Ambainis (2004) and Szegedy (2004). Our algorithm combines the benefits of these approaches in terms of being able to find marked elements, incurring the smaller cost of the two, and being applicable to a larger class of Markov chains. In addition, it is conceptually simple and avoids some technical difficulties in the previous analyses of several algorithms based on quantum walk.Comment: 21 pages. Various modifications and improvements, especially in Section

    Linear time algorithm for quantum 2SAT

    Get PDF
    A canonical result about satisfiability theory is that the 2-SAT problem can be solved in linear time, despite the NP-hardness of the 3-SAT problem. In the quantum 2-SAT problem, we are given a family of 2-qubit projectors Πij\Pi_{ij} on a system of nn qubits, and the task is to decide whether the Hamiltonian H=ΠijH=\sum \Pi_{ij} has a 0-eigenvalue, or it is larger than 1/nα1/n^\alpha for some α=O(1)\alpha=O(1). The problem is not only a natural extension of the classical 2-SAT problem to the quantum case, but is also equivalent to the problem of finding the ground state of 2-local frustration-free Hamiltonians of spin 12\frac{1}{2}, a well-studied model believed to capture certain key properties in modern condensed matter physics. While Bravyi has shown that the quantum 2-SAT problem has a classical polynomial-time algorithm, the running time of his algorithm is O(n4)O(n^4). In this paper we give a classical algorithm with linear running time in the number of local projectors, therefore achieving the best possible complexity.Comment: 20 page

    On the black-box complexity of Sperner's Lemma

    Full text link
    We present several results on the complexity of various forms of Sperner's Lemma in the black-box model of computing. We give a deterministic algorithm for Sperner problems over pseudo-manifolds of arbitrary dimension. The query complexity of our algorithm is linear in the separation number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an O(n)O(\sqrt{n}) deterministic query algorithm for the black-box version of the problem {\bf 2D-SPERNER}, a well studied member of Papadimitriou's complexity class PPAD. This upper bound matches the Ω(n)\Omega(\sqrt{n}) deterministic lower bound of Crescenzi and Silvestri. The tightness of this bound was not known before. In another result we prove for the same problem an Ω(n4)\Omega(\sqrt[4]{n}) lower bound for its probabilistic, and an Ω(n8)\Omega(\sqrt[8]{n}) lower bound for its quantum query complexity, showing that all these measures are polynomially related.Comment: 16 pages with 1 figur
    corecore